STEP 4: Matching Concepts and Ideas to Research Findings Conservation of Matter Topic Study

Science Concepts and Ideas	Research Findings
Properties	Matter and Its Properties
• Objects have many observable properties,	Students need to have a concept of matter in order to
including size weight, and shape. Those	understand conservation of matter. (BSL p 336)
properties can be measured using tools such	Students need to accept weight as an intrinsic property of
as rulers and balances. (<i>NSES</i> K-4 p 127)	matter to use weight conservation reasoning. (BSL p 336)
Materials can exist in different states-	 Confusion between weight and density contributes to difficulty
solid, liquid, and gas. (<i>NSES</i> K-4 p 127)	understanding conservation of matter. (BSL p 336)
• Air is a substance that surrounds us, takes	• The concept of mass develops slowly. Mass is often associated
up space, and whose movements we feel as	with the phonetically similar word 'massive' and thus may be
wind. (BSL 3-5 p 68)	equated with an increase in size or volume. (Driver p 78)
	• The idea that gases possess material character is difficult.
Physical and Chemical Change	Students may not regard gases as having weight or mass. Until
• Water can be a liquid or solid and can go	they accept gas as a substance, they are unlikely to conserve mass
back and forth from one form to another. If	in changes that involve gases (Driver p 80)
water is turned into ice and then ice is	in enumber and in orde Barrer (2000 p. 00)
allowed to melt, the amount of water is the	Physical and Chemical Change
same as it was before freezing (BSL K-2 n	• There is often a discrepancy between weight and matter
67)	conservation with dissolving. Some students accept the idea that
• No matter how parts of an object are	the substance is still there but the weight is negligible is "up in
assembled the weight of the whole object	the water' or it no longer weighs anything (Driver n 84)
made is always the same as the sum of the	 Some students believe one state of matter of the same substance
parts: and when a thing is broken into parts	has more or less weight than a different state (Driver p 80)
the parts have the same total weight as the	 In changes that involve a gas students are more apt to
original thing $(BSL 3-5 \text{ p} 77)$	understand matter is conserved if the gas is visible (<i>BSL</i> p 337)
 Substances react chemically in 	 Weight conservation during chemical reactions is more difficult
characteristic ways with other substances to	for students to understand particularly if a gas is involved (BSL
form new substances with different	p 337)
characteristic properties. In chemical	 Many students do not view chemical changes as interactions.
reactions, the total mass is conserved.	They have difficulty understanding the idea that substances can
(NSES 5-8 p 154)	form from a recombination of the original atoms. (BSL p 337)
	• Students have more difficulty with the quantitative aspect of
Interactions in a Closed System	chemical change and conservation (Driver p 88)
No matter how substances within a closed	 The way a student perceives a chemical or physical change may
system interact with one another or how	determine whether they understand matter is conserved. For
they combine or break apart the total mass	example if it looks as if something has disappeared or spread out
of the system remains the same (BSL 6-8 p	more then student may think the mass changes (Driver p 77)
79)	
	Particle Ideas
Particulate Matter	 Newly constructed ideas of atoms may undermine conservation
The idea of atoms explains the conservation	reasoning For example if a material is seen as being dispersed in
of matter. If the number of atoms stays the	very small particles then it may be regarded as having negligible
same no matter how they are rearranged	weight or more spread out and less heavy (Driver p 77)
then their total mass stavs the same. (BSL 6-	
8 p 79)	
1 /	

Adapted from CTS and the Maine Mathematics and Science Alliance (http://www.mmsa.org).

BSL: *Benchmarks for science literacy*. American Association for the Advancement of Science (AAAS). (1993). New York: Oxford University Press. CTS: *Curriculum topic study: Bridging the gap between standards and practice*. Keeley, P. (2005). Thousand Oaks, CA: Corwin Press. Driver: Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). *Making Sense of Secondary Science*. New York, NY: Routledge. NSES: National Research Council. (1996). *National Science Education Standards*. Washington, DC: National Academy Press.